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In two recent articles, Rudolph and Destexhe (2003, 2005) studied a leaky
integrator model (an RC-circuit) driven by correlated (“colored”) gaus-
sian conductance noise and Gaussian current noise. In the first article,
they derived an expression for the stationary probability density of the
membrane voltage; in the second, they modified this expression to cover
a larger parameter regime. Here we show by standard analysis of solv-
able limit cases (white noise limit of additive and multiplicative noise
sources; only slow multiplicative noise; only additive noise) and by nu-
merical simulations that their first result does not hold for the general
colored-noise case and uncover the errors made in the derivation of
a Fokker-Planck equation for the probability density. Furthermore, we
demonstrate analytically (including an exact integral expression for the
time-dependent mean value of the voltage) and by comparison to sim-
ulation results that the extended expression for the probability density
works much better but still does not exactly solve the full colored-noise
problem. We also show that at stronger synaptic input, the stationary
mean value of the linear voltage model may diverge and give an exact
condition relating the system parameters for which this takes place.

1 Introduction

The inherent randomness of neural spiking has stimulated the exploration
of stochastic neuron models for several decades (Holden, 1976; Tuckwell,
1988, 1989). The subthreshold membrane voltage of cortical neurons shows
strong fluctuations in vivo caused mainly by synaptic stimuli coming
from as many as tens of thousands of presynaptic neurons. In the theo-
retical literature, these stimuli have been approximated in different ways.
The most biophysically realistic description is to model an extended neu-
ron with different sorts of synapses distributed over the dendrite and
possibly the soma, with each synapse following its own kinetics when
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excited by random incoming pulses that change the local conductance. In
a point-neuron model for the membrane potential in the spike generat-
ing zone, this amounts to an effective conductance noise for each sort of
synapse. If the contribution of a single spike is small and the effective in-
put rates are high, the incoming spike trains can be well approximated by
gaussian white noise; this is known as the diffusion approximation of spike
train input (see, e.g., Holden, 1976). Furthermore, these conductance fluc-
tuations driving the membrane voltage dynamics will be correlated in time
(the noise will be “colored”) due to the synaptic filtering (Brunel & Sergi,
1998). Assuming the validity of the diffusion approximation, two further
common approximations found in the theoretical literature are to (1) replace
the conductance noise by a current noise and (2) neglect the correlation of
the noise and use a white noise. Exploring the validity of these approxima-
tions has been the aim of a number of recent theory articles (Rudolph &
Destexhe, 2003, 2005; Richardson, 2004; Richardson & Gerstner, 2005).

Rudolph and Destexhe (hereafter referred to as R&D) recently studied
the subthreshold voltage dynamics driven by colored gaussian conduc-
tance and current noises, with the goal of deriving analytical expressions
for the probability density of the voltage fluctuations in the absence of a
spike-generating mechanism. Such expressions are desirable because they
permit one to use experimentally measured voltage traces in vivo to de-
termine (or at least to obtain constraints on) synaptic parameters. R&D
gave a one-dimensional Fokker-Planck equation for the evolution of the
probability density of the voltage variable and solved this equation in the
stationary state. Comparing this solution to results of numerical simula-
tions they found good agreement with simulations of the full model. In a
recent article, however, they discovered a disagreement of their formula
to simulations in extreme parameter regimes (Rudolph & Destexhe, 2005).
R&D proposed an extended expression that is functionally equivalent to
their original formula; it results from effective correlation times that were
introduced into their original formula in a heuristic manner. According to
R&D, this new expression fits simulation results well for various parameter
sets.

In this comment we show that both proposed formulas are not exact
solutions of the mathematical problem that R&D posed. We demonstrate
this by the analysis of limit cases by means of an exact analytical result
for the mean value of the voltage as well as by numerical simulation re-
sults. The failure of the first formula is pronounced; for example, it fails
dramatically if the synaptic correlation times are varied by only one order
of magnitude relative to R&D’s standard parameters. The extended ex-
pression, although not an exact solution of the problem, seems to provide
a reasonable approximation for the probability density of the membrane
voltage if the conductance noise is not too strong. We also show that if the
conductance noise is strong, the model itself and not only the solutions
proposed by R&D becomes problematic: the moments of the voltage, such
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as its stationary mean value, diverge. For the mean value we will give an
exact solution and identify by means of this solution the parameters for
which a divergence is observed.

This letter is organized as follows. In the next section, we introduce the
model that R&D studied. Then we study the limit cases of only white noise
(section 3), of only additive colored noise (section 4), and of slow (“static”)
multiplicative noise (section 5). In section 6 we derive expressions for the
time-dependent and the stationary mean value of the voltage at arbitrary
values of the correlation times. Section 7 is devoted to a comparison of
numerical simulations to the various theoretical formulas. We summarize
and discuss our findings in section 8. In the appendix, we uncover the
errors in the derivation of the Fokker-Planck equation that R&D made.
We anticipate that our results will help future investigations of the neural
colored noise problem.

2 Basic Model

The current balance equation for a patch of passive membrane is

Cm
dV(t)

dt
= −gL (V(t) − EL ) − 1

a
Isyn(t), (2.1)

where Cm is the specific membrane capacity, a is the membrane area, and
gL and EL the leak conductance and reversal potential, respectively. The
total synaptic current is given by

Isyn = ge (t)(V(t) − Ee ) + gi (t)(V(t) − Ei ) − I (t), (2.2)

with ge,i being the noisy conductances for excitatory and inhibitory
synapses and Ee,i the respective reversal potentials; I (t) is an additional
noisy current. With respect to the conductances, R&D assume the diffusion
approximation to be valid. This means approximating the superposition of
incoming presynaptic spikes at the excitatory and inhibitory synapses by
gaussian white noise. Including a first-order linear synaptic filter, the con-
ductances are consequently described by Ornstein-Uhlenbeck processes
(OUP); similarly, R&D also assume a OUP for the current I (t)

dge (t)
dt

= − 1
τe

(ge (t) − ge0) +
√

2σ 2
e

τe
ξe (t) (2.3)

dgi (t)
dt

= − 1
τi

(gi (t) − gi0) +
√

2σ 2
i

τi
ξi (t) (2.4)
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d I (t)
dt

=− 1
τI

(I (t) − I0) +
√

2σ 2
I

τI
ξI (t). (2.5)

Here the functions ξe,i,I (t) are independent gaussian white noise sources
with 〈ξk(t)ξl (t′)〉 = δk,lδ(t − t′) (here k, l ∈ {e, i, I }, and the brackets 〈· · ·〉
stand for a stationary ensemble average). The processes ge , gi , and I are
gaussian distributed around the mean values ge0, gi0, and I0 with variances
σ 2

e , σ 2
i , and σ 2

I , respectively:

ρe (ge ) = 1√
2πσ 2

e

exp
[ − (ge − ge0)2/

(
2σ 2

e

)]
(2.6)

ρi (gi ) = 1√
2πσ 2

i

exp
[−(gi − gi0)2/

(
2σ 2

i

)]
(2.7)

ρI (I ) = 1√
2πσ 2

I

exp
[−(I − I0)2/

(
2σ 2

I

)]
. (2.8)

As discussed by R&D, these solutions permit unphysical negative conduc-
tances, which become especially important if ge0/σe and gi0/σi are small.

Furthermore, the three processes are exponentially correlated with the
correlation times given by τe , τi , and τI , respectively

〈
(ge (t) − ge0) (ge (t + τ ) − ge0)

〉 = σ 2
e exp[−|τ |/τe ] (2.9)〈

(gi (t) − gi0) (gi (t + τ ) − gi0)
〉 = σ 2

i exp[−|τ |/τi ] (2.10)〈
(I (t) − I0) (I (t + τ ) − I0)

〉 = σ 2
I exp[−|τ |/τI ]. (2.11)

Note that R&D used another parameter to quantify the strength of the
noise processes: D{e,i,I } = 2σ 2

e,i,I /τe,i,I . Here we will not follow this unusual
scaling1 but consider variations of the correlation times at either fixed vari-
ance σ 2

e,i,I of the OUPs or fixed noise intensities σ 2
e,i,I τe,i,I .

Eq. (1) can be looked upon as a one-dimensional dynamics driven by
multiplicative and additive colored noises. Equivalently, it can be, together

1 In general, two different intensity scalings for an OUP η(t) are used in the literature
see, e.g., Hänggi & Jung, 1995). (1) Fixing the noise intensity Q = ∫ ∞

0 dT〈η(t)η(t + T)〉 =
σ 2τ , allowing for a proper white noise limit by letting τ approach zero. With fixed noise
intensity and τ → ∞ (static limit), the effect of the OUP vanishes, since the variance of
the process tends to zero. (2) Fixing the noise variance σ 2, which leads to a finite effect
of the noise for τ → ∞ (static limit) but makes the noise effect vanish as τ → 0. R&D
use functions α{e,i,I }(t), the long-time limit of which is proportional to the noise intensity
σ 2

e,i,I τe,i,I .
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with equations 2.3, 2.4, and 2.5, regarded as a four-dimensional nonlinear
dynamical system driven by only additive white noise. For such a process
it is in general quite difficult to calculate the statistics, such as the stationary
probability density P0(V, ge , gi , I ) or the stationary marginal density for the
driven variable ρ(V) = ∫ ∫ ∫

dgedgi d I P0(V, ge , gi , I ) unless so-called po-
tential conditions are met (see, e.g., Risken, 1984). It can be easily shown
that the above problem does not fulfill these potential conditions, and no
solution has yet been found.

R&D have proposed a solution for the stationary marginal density of
the membrane voltage ρ(V) for colored noises of arbitrary correlation times
driving their system. Their solution for the stationary probability of the
membrane voltage reads

ρRD(V) = N exp
[

a1

2b2
ln

(
b2V2 + b1V + b0

)

+ 2b2a0 − a1b1

b2

√
4b2b0 − b2

1

arctan


 2b2V + b1√

4b2b0 − b2
1





 , (2.12)

with N being the normalization constant and with these abbreviations:

a0 = 1
(Cma )2

(
2Cma (gL ELa + ge0 Ee + gi0 Ei ) + I0Cma + σ 2

e τe Ee + σ 2
i τi Ei

)

a1 = − 1
(Cma )2

(
2Cma (gLa + ge0 + gi0) + σ 2

e τe + σ 2
i τi

)

b0 = 1
(Cma )2

(
σ 2

e τe E2
e + σ 2

i τi E2
i + σ 2

I τI
)

b1 = − 2
(Cma )2

(
σ 2

e τe Ee + σ 2
i τi Ei

)

b2 = 1
(Cma )2

(
σ 2

e τe + σ 2
i τi

)
. (2.13)

In a subsequent Note on their article, Rudolph and Destexhe (2005) con-
sidered the case of only multiplicative colored noise (σI = 0) and showed
that the solution in equation 2.12 does not fit numerical simulations for
certain parameter regimes. They claim that this disagreement is due to a
filtering problem not properly taken into account in their previous work.
They proposed a new solution for the case of only multiplicative noise that
is functionally equivalent to equation 2.12 for σI = 0 but simply replaces
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correlation times by effective correlation times,

τ ′
e,i = 2τe,iτ0

τe + τ0
. (2.14)

where τ0 = aCm/(agL + ge0 + gi0). Explicitly, this extended expression is
given by

ρRD, ext(V) = N′ exp
[

A1 ln
(

σ 2
e τ ′

e

(Cma )2 (V − Ee )2 + σ 2
i τ ′

i

(Cma )2 (V − Ei )2
)

+ A2 arctan


σ 2

e τ ′
e (V − Ee ) + σ 2

i τ ′
i (V − Ei )

(Ee − Ei )
√

σ 2
e τ ′

eσ
2
i τ ′

i





 (2.15)

with the abbreviations

A1 = −2Cma (ge0 + gi0) + 2Cma2gL + σ 2
e τ ′

e + σ 2
i τ ′

i

2
(
σ 2

e τ ′
e + σ 2

i τ ′
i

) (2.16)

A2 = gLa
(
σ 2

e τ ′
e (EL − Ee ) + σ 2

i τ ′
i (EL − Ei )

) + (
ge0σ

2
i τ ′

i − gi0σ
2
e τ ′

e

)
(Ee − Ei )

(Ee − Ei )
√

σ 2
e τ ′

eσ
2
i τ ′

i

(
σ 2

e τ ′
e + σ 2

i τ ′
i

)
/(2Cma )

.

(2.17)

The introduction of the effective correlation times was justified by con-
sidering the effective-time constant (ETC) or gaussian approximation from
Richardson (2004) (see below), which reduces the system to one with addi-
tive noise. The new formula, equation 2.15, fits well their simulation results
for various combinations of parameters (Rudolph & Destexhe, 2005).

In this comment, we will show that neither of these formulas yields
the exact solution of the mathematical problem. As we will show first,
the original formula fails significantly outside the limited parameter range
investigated in R&D (2003). Apparently the second formula provides a good
fit for a number of parameter sets. It also reproduces two of the simple limit
cases, in which the first formula fails. By means of the third limit case as well
as of an exact solution for the stationary mean value (derived in section 6),
we can show that the new formula is not an exact result either.

To demonstrate the invalidity of the first expression in the general case,
we will show that equation 2.12 fails in three limits that are tractable by
standard techniques: (1) the white noise limit of all three colored noise
sources, that is, keeping the noise intensities σ 2

e,i,I τe,i,I fixed and letting all
noise correlation times tend to zero τe,i → 0; (2) the case of additive colored
noise only; and (3) the limit of large τe,i in the case of multiplicative colored
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noises with fixed variances σ 2
e and σ 2

i . In all cases, we also ask whether
mean and variance can be expected to be finite as R&D tacitly assumed.

We will also compare both solutions proposed by R&D as well as our
own analytical results for the limit cases to numerical simulation results.
While the failure of the first formula, equation 2.12, is pronounced except
for a small parameter regime, deviations of the extended expression, equa-
tion 2.15, are much smaller and for six different parameter sets inspected,
the new formula can be regarded at least as a good approximation. Param-
eters can be found, however, where deviations of this new formula from
numerical simulations become more serious.

To simplify the notation we will use the new variable v = V − 	 with

	 = gLa EL + ge0 Ee + gi0 Ei + I0

gLa + ge0 + gi0
. (2.18)

Then the equations can be recast into

v̇ =−βv − ye (v − Ve ) − yi (v − Vi ) + yI (2.19)

ẏe,i,I =− ye,i,I

τe,i,I
+

√
2σ̃ 2

e,i,I

τe,i,I
ξe,i,I (t) (2.20)

with the abbreviations

β = gLa + ge0 + gi0

aCm
(2.21)

Ve,i = Ee,i − 	 (2.22)

σ̃e,i,I = σe,i,I /(aCm). (2.23)

Once we have found an expression for the probability density of v, the
density for the original variable V is given by the former density taken at
v = (V − 	). Finally, we briefly explain the effective-time constant (ETC)
or gaussian approximation (cf. Richardson, 2004; Richardson & Gerstner,
2005, and references there), which we will refer to later. Assuming weak
noise sources, the voltage will fluctuate around the deterministic equilib-
rium value v = 0 with an amplitude proportional to the square root of the
sum of the noise variances; for example, for only excitatory conductance
fluctuations we would have a proportionality to the standard deviation
of ye , that is, 〈|v|〉 ∝ √〈y2

e 〉. From this we can see that the multiplicative
terms ye V and yI V make a contribution proportional to the squares of the
standard deviations and can therefore be neglected for weak noise. The
resulting dynamics contains only additive noise sources:

v̇ = −βv + ye Ve + yi Vi + yI . (2.24)
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The stationary probability density is a gaussian,

ρETC(v) = exp
[−v2/

(
2〈v2〉ETC

)]
√

2π〈v2〉ETC

(2.25)

with zero mean and a variance given by Richardson (2004):

〈v2〉ETC = V2
e

σ 2
e τe/β

1 + βτe
+ V2

i
σ 2

i τi/β

1 + βτi
+ σ 2

I τI /β

1 + βτI
. (2.26)

The solution takes into account the effect of the mean conductances on the
effective membrane time constant 1/β through equation 2.21.

3 The White Noise Limit

If we fix the noise intensities

Qe,i,I = σ̃ 2
e,i,I τe,i,I , (3.1)

we may consider the limit of white noise by letting τe,i,I → 0. A special case
of this has been recently considered by Richardson (2004) with σI = 0 (only
multiplicative noise is present).

In the white noise limit, the three OUPs approach mutually independent
white noise sources,

ye →
√

2Qeξe (t), yi →
√

2Qiξi (t), yI →
√

2QI ξI (t), (3.2)

and thus the current balance equation, equation 2.19, becomes

v̇ = −βv −
√

2Qe (v − Ve )ξe (t) −
√

2Qi (v − Vi )ξi (t) +
√

2QI ξI (t), (3.3)

which is equivalent2 to a driving by a single gaussian noise ξ (t),

v̇ = −βv +
√

2Qe (v − Ve )2 + 2Qi (v − Vi )2 + 2QI ξ (t), (3.4)

with 〈ξ (t)ξ (t′)〉 = δ(t − t′). Since we approach the white noise limit having
in mind colored noises with negligible correlation times, equation 3.4 has
to be interpreted in the sense of Stratonovich (Risken, 1984; Gardiner, 1985).

2 The sum of three independent gaussian noise sources gives one gaussian noise, the
variance of which equals the sum of the variances of the single noise sources.
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The drift and diffusion coefficients then read (Risken, 1984)

D(1) = −βv + Qe (v − Ve ) + Qi (v − Vi ) = −βv + 1
2

d D(2)

dv
(3.5)

D(2) = QI + Qe (v − Ve )2 + Qi (v − Vi )2, (3.6)

and the stationary solution of the probability density is given by Risken
(1984),

ρwn(v) = N exp
[
− ln

(
D(2)) +

∫ v

dx
D(1)(x)

D(2)(x)

]
, (3.7)

where the subscript wn refers to white noise.
After carrying out the integral, the solution can be written as follows,

ρwn(v) = N exp
[
−β + b̃2

2b̃2
ln

(
b̃2v

2 + b̃1v + b̃0
)

+ β b̃1

b̃2

√
4b̃0b̃2 − b̃2

1

arctan


 2b̃2v + b̃1√

4b̃0b̃2 − b̃2
1





 (3.8)

with these abbreviations:

b̃0 = QI + Qe V2
e + Qi V2

i (3.9)

b̃1 =−2(Qe Ve + Qi Vi ) (3.10)

b̃2 = Qe + Qi . (3.11)

Different versions of the white noise case have been discussed and also
analytically studied in the literature (see, e.g., Hanson & Tuckwell, 1983;
Lánský & Lánská, 1987; Lánská, Lánský, & Smith, 1994; Richardson, 2004).
In particular, equation 3.8 is consistent with the expression for the voltage
density in a leaky integrate-and-fire neuron driven by white noise3 given
by Richardson, (2004).

Since equation 2.12 was proposed by R&D as the solution for the prob-
ability density at arbitrary correlation times of the colored noise sources, it
should be also valid in the white noise limit and agree with equation 3.8.
On closer inspection, it becomes apparent that both equations 2.12 and 2.15

3 The density equation 3.8 results from equation 2.18, in Richardson (2004) when
firing and reset in the integrate-and-fire neuron become negligible. This can be formally
achieved by letting threshold and reset voltage go to positive infinity.
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have the structure of the white noise solution, equation 3.8. Comparing
the factors of the terms in the exponential, we find that the first solution
(in terms of the shifted voltage variable and using the noise intensities,
equation 3.1) can be written as

ρRD(v, Qe , Qi , QI ) = ρwn(v, Qe/2, Qi/2, QI /2), (3.12)

where the additional arguments of the functions indicate the parametric
dependence of the densities on the noise intensities. According to equa-
tion 3.12, if formulated in terms of the noise intensities (and not the noise
variances), the first formula proposed by R&D does not depend on the cor-
relation times τe,i,I at all. Furthermore, it is evident from equation 3.12 that
the expression is incorrect in the white noise limit. If all correlation times
τe,i,I simultaneously go to zero, the density approaches the white noise so-
lution with only half of the true values of the noise intensities. The density
will certainly depend on the noise intensities and will change if one uses
only half of their values.

We may also rewrite R&D’s extended expression, equation 2.15, in terms
of the white noise density:

ρRD,ext(v, Qe , Qi ) = ρwn(v, Qe/(1 + βτe ), Qi/(1 + βτi ), QI = 0). (3.13)

This expression agrees with the original solution by R&D only for the
specific parameter set,

τe = τi = 1/β. (3.14)

We note that since the extended expression can be expressed by means of
the white noise density, it makes sense to describe the extended expression
by means of effective noise intensities,

Q′
e,i = Qe,i

1 + βτe,i
(3.15)

rather than in terms of the effective correlation times τ ′
e,i (cf. equation 2.14)

used by R&D. The assertion behind equation 3.13 is the following: the
probability density of the membrane voltage is always equivalent to the
white noise density; correlations in the synaptic input (i.e., finite values of
τe,i,I ) lead to rescaled (smaller) noise intensities Q′

e,i given in equation 3.15.
If we consider the white noise limit of the right-hand side of

equation 3.13, we find that the extended expression equation 2.15 repro-
duces this limit:

lim
τe ,τi →0

ρRD,ext(V, Qe , Qi ) = ρwn(V, Qe , Qi , QI = 0). (3.16)
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So there is no problem with the extended expression in the white noise
limit.

3.1 Divergence of Moments in the White Noise Limit and in R&D’s
Expressions for the Probability Density. We consider the density equa-
tion 3.8 in the limits v → ±∞ and conclude whether the moments and,
in particular, the mean value of the white noise density are finite; similar
arguments will be applied to the solutions proposed by R&D.

At large v and to leading order in 1/v, we obtain

ρwn(v) ∼ |v|−
β+b̃2

b̃2 Nb̃
− β+b̃2

2b̃2
2 exp


± β b̃1

b̃2

√
4b̃0b̃2 − b̃2

1

π

2


 as v → ±∞.

(3.17)

When calculating the nth moment, we have to multiply with vn and obtain
a nondiverging integral only if vnρwn(v) decays faster than v−1. This is the
case only if n − (β + b̃2)/b̃2 < −1 or using equation 3.11,

∣∣〈vn〉wn
∣∣ < ∞ iff β > n(Qe + Qi ), (3.18)

where “iff” stands for “if and only if” and the index wn indicates that we
consider the white noise case. Note that no symmetry argument applies
for odd n since the asymptotic limits differ for ∞ and −∞ according to
equation 3.17. For the mean, this implies that

|〈v〉wn| < ∞ iff β > Qe + Qi ; (3.19)

otherwise, the integral diverges.
In general, the power law tail in the density is a hint that (for white noise

at least) we face the problem of rare strong deviations in the voltage that are
due to the specific properties of the model (multiplicative gaussian noise).
Because of equation 3.12, similar conditions (differing by a prefactor of 1/2
on the respective right-hand sides) also apply for the finiteness of the mean
and variance of the original solution, equation 2.12, proposed by R&D. For
the mean value of this solution one, obtains the condition

|〈v〉RD| < ∞ iff β >
Qe + Qi

2
, (3.20)

which should hold true in the general colored noise case but does not agree
with the condition in equation 3.19 even in the white noise case.
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From the extended expression we obtain

|〈v〉RD,ext| < ∞ iff β >
Qe

1 + βτe
+ Qi

1 + βτi
. (3.21)

Note that equation 3.21 agrees with equation 3.19 only in the white-noise
case (i.e. for τe , τi → 0). Below we will show that equation 3.19 gives the
correct condition for a finite mean value in the general case of arbitrary
correlation times, too. Since for finite τe , τi , the two conditions equation 3.19
and equation 3.21 differ, we can already conclude that the equation 2.15 that
led to condition equation 3.21 cannot be the exact solution of the original
problem.

4 Additive Colored Noise

Setting the multiplicative colored noise sources to zero, R&D obtain an
expression for the marginal density in case of additive colored noise only
(cf. equations 3.7–3.9 in R&D)

ρadd,RD(V) = N exp
[
−a2gLCm(V − EL − I0/(gLa ))2

σ 2
I τI

]
, (4.1)

which corresponds in our notation and in terms of the shifted variable v to

ρ̃add,RD(v) = N exp
[
−βv2

QI

]
. (4.2)

Evidently, once more a factor 2 is missing in the white noise case (where
the process v(t) itself becomes an OUP), since for an OUP, we should have
ρ ∼ exp[−βv2/(2QI )]. However, there is also a missing additional depen-
dence on the correlation time.

For additive noise only, the original problem given in equation 2.1 re-
duces to

v̇ = −βv + yI , (4.3)

ẏI = − 1
τI

yI +
√

2QI

τI
ξI (t). (4.4)

This system is mathematically similar to the gaussian approximation or
effective-time constant approximation, equation 2.25, in which no multi-
plicative noise is present as well. The density function for the voltage is
well known; for clarity, we show here how to calculate it.



1908 B. Lindner and A. Longtin

The system, equations 4.3 and 4.4, obeys the two-dimensional Fokker-
Planck equation,

∂t P(v, yI , t) =
[
∂v(βv − yI ) + ∂yI

(
yI

τI
+ QI

τ 2
I

∂yI

)]
P(v, yI , t) (4.5)

The stationary problem (∂t P0(v, yI ) = 0) is solved by an ansatz P0(v, y) ∼
exp[Av2 + Bvy + Cy2], yielding the solution for the full probability density:

P0(v, yI ) = N exp
[

c
2

(
y2

I − 2βvyI − QI β

τ 2
I

cv2
)]

, c = −τI (1 + βτI )
QI

. (4.6)

Integrating over yI yields the correct marginal density,

ρadd (v) =
√

β(1 + βτI )
2π QI

exp
[
− βv2

2QI
(1 + βτI )

]
, (4.7)

which is in disagreement with equation 4.2 and hence also with equation 4.1.
From the correct solution given in equation 4.7, we also see what happens
in the limit of infinite τ for fixed noise intensity QI : the exponent tends
to minus infinity except at v = 0, or, put differently, the variance of the
distribution tends to zero, and we end up with a δ function at v = 0. This
limit makes sense (cf. note 1) but is not reflected at all in the original solution,
equation 2.15, given by R&D.

We can also rewrite the solution in terms of the white noise solution in
the case of vanishing multiplicative noise:

ρadd(v) = ρwn(v, Qe = 0, Qi = 0, QI /[1 + βτI ]). (4.8)

Thus, for the additive noise is true, what has been assumed by R&D in the
case of multiplicative noise: the density in the general colored noise case
is given by the white noise density with a rescaled noise intensity Q′

I =
QI /[1 + βτI ] (or equivalently, rescaled correlation time τ ′

I = 2τI /[1 + βτI ]
in equation 4.2 with QI = σ 2τ ′

I ).
We cannot perform the limit of only additive noise in the extended

expression, equation 2.15, proposed by R&D because this solution was
meant for the case of only multiplicative noise. If, however, we generalize
that expression to the case of additive and multiplicative colored noises, we
can consider the limit of only additive noise in this expression. This is done
by taking the original solution by R&D, equation 2.12, and replacing not
only the correlation times of the multiplicative noises τe,i by the effective
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ones τ ′
e,i but also that of the additive noise τI by an effective correlation

time,

τ ′
I = 2τI

1 + τI β
. (4.9)

If we now take the limit Qe = Qi = 0, we obtain the correct density,

ρrud,ext,add (v) = ρwn(v, Qe = 0, Qi = 0, QI /[1 + βτI ]), (4.10)

as becomes evident on comparing the right-hand sides of equation 4.10 and
equation 4.8. Finally, we note that the case of additive noise is the only limit
that does not pose any condition on the finiteness of the moments.

5 Static Multiplicative Noises Only (Limit of Large τe,i )

Here we assume for simplicity σ̃I = 0 and consider multiplicative noise
with fixed variances σ̃ 2

e,i only. If the noise sources are much slower than the
internal timescale of the system, that is, if 1/(βτe ) and 1/(βτi ) are practi-
cally zero, we can neglect the time derivative in equation 2.19. This means
that the voltage adapts instantaneously to the multiplicative (“static”) noise
sources which is strictly justified only for βτe , βτi → ∞. If τe , τi attain large
but finite values (βτi , βτi � 1), the formula derived below will be an ap-
proximation that works the better the larger these values are. Because of the
slowness of the noise sources compared to the internal timescale, we call
the resulting expression the “static-noise” theory for simplicity. This does
not imply that the total system (membrane voltage plus noise sources) is
not in the stationary state: we assume that any initial condition of the vari-
ables has decayed on a timescale t much larger than τe,i .4 For a simulation
of the density, this has the practical implication that we should choose a
simulation time much larger than any of the involved correlation times.

Setting the time derivative in equation 2.19 to zero, we can determine at
which position the voltage variable will be for a given quasi-static pair of
(ye , yi ) values, yielding

v = ye VE + yi Vi

β + ye + yi
. (5.1)

4 In the strict limit of βτe , βτi → ∞, this would imply that t goes stronger to infinity
than the correlation times τe,i do.
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This sharp position will correspond to a δ peak of the probability density

δ

(
v − ye VE + yi Vi

β + ye + yi

)
= |yi (Vi − Ve ) − βVe |

(v − Ve )2 δ

(
ye + βv + yi (v − Vi )

(v − Ve )

)
(5.2)

(here we have used δ(ax) = δ(x)/|a |). This peak has to be averaged over
all possible values of the noise, that is, integrated over the two gaussian
distributions in order to obtain the marginal density:

ρstatic(v) =〈δ(v − v(t))〉

=
∫ ∞

−∞

∫ ∞

−∞

dyedyi

2πσ̃i σ̃e

|yi (Vi − Ve ) − βVe |
(v − Ve )2 δ

(
ye + βv + yi (v − Vi )

(v − Ve )

)

× exp
[
− y2

e

2σ̃ 2
e

− y2
i

2σ̃ 2
i

]
(5.3)

Carrying out these integrals yields

ρstatic(v) = σ̃e σ̃i |Ve − Vi |
πβ2µ(v)

e
− v2

2µ(v)

[
e
− ν(v)

µ(v) +
√

πν(v)
µ(v)

erf

(√
ν(v)
µ(v)

)]
, (5.4)

where erf(z) is the error function (Abramowitz & Stegun, 1970) and the
functions µ(v) and ν(v) are given by

µ(v) = σ̃ 2
e (v − Ve )2 + σ̃ 2

i (v − Vi )2

β2 (5.5)

ν(v) =
[
σ̃ 2

e Ve (v − Ve ) + σ̃ 2
i Vi (v − Vi )

]2

2σ̃ 2
e σ̃ 2

i (Ve − Vi )2
. (5.6)

If one of the expressions by R&D, equation 2.12 or 2.15, would be the correct
solution, it should converge for σI = 0 and τe,i → ∞ to the formula for the
static case, equation 5.4. In general, this is not the case since the functional
structures of the white-noise solution and of the static-noise approximation
are quite different. There is, however, one limit case in which the extended
expression yields the same (although trivial) function. If we fix the noise
intensities Qe,i and let the correlation times go to infinity, the variances
will go to zero and the static noise density, equation 5.4, approaches a
δ peak at v = 0. Although the extended expression, equation 2.15, has a
different functional dependence on system parameters and voltage, the
same thing happens in the extended expression for τe,i → ∞ because the
effective noise intensities Q′

e,i = Qe,i/(1 + βτe,i ) approach zero in this limit.
The white noise solution at vanishing noise intensities is, however, also
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a δ peak at v = 0. Hence, in the limit of large correlation time at fixed
noise intensities, both the static noise theory, equation 5.4, and the extended
expression yield the probability density of a noise-free system and therefore
agree. For fixed variance where a nontrivial large-τ limit of the probability
density exists, the static noise theory and the extended expression by R&D
differ as we will also numerically verify.

A final remark concerns the asymptotic behavior of the static noise so-
lution, equation 5.4. The asymptotic expansions for v → ±∞ show that the
density goes like |v|−2 in both limits. Hence, in this case, we cannot obtain a
finite variance of the membrane voltage at all (the integral

∫
dv v2ρstatic(v)

will diverge). The mean may be finite since the coefficients of the v−2 term
are symmetric in v. The estimation in the following section, however, will
demonstrate that this is valid only strictly in the limit τe,i → ∞ but not at
any large but finite value of τe,i . So the mean may diverge for large but finite
τe,i .

6 Mean Value of the Voltage for Arbitrary Values of the Correlation
Times

By inspection of the limit cases, we have already seen that the moments do
not have to be finite for an apparently sensible choice of parameters. For
the white noise case, it was shown that the mean of the voltage is finite only
if β > Qe + Qi .

Next, we show by direct analytical solution of the stochastic differential
equation, equation 2.19, involving the colored noise sources, equation 2.20,
that this condition (i.e., equation 3.19), holds in general, and thus a diver-
gence of the mean is obtained for β < Qe + Qi .

For only one realization of the process, equation 2.19, the driving func-
tions ye (t), yi (t), and yI (t) can be regarded as just time-dependent parameters
in a linear differential equation. The solution is then straightforward (see
also Richardson, 2004, for the special case of only multiplicative noise):

v(t) = v0 exp
[
−βt −

∫ t

0
du(ye (u) + yi (u))

]
+

∫ t

0
ds(Ve ye (s) + Vi yi (s)

+yI (s))e−β(t−s) exp
[
−

∫ t

s
du(ye (u) + yi (u))

]
. (6.1)

The integrated noise processes we,i (s, t) = ∫ t
s duye,i (u) in the exponents are

independent gaussian processes with variance

〈w2
e,i (s, t)〉 = 2Qe,i (t − s − τe,i + τe,i e−(t−s)/τe,i ). (6.2)
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For a gaussian variable, we know that 〈ew〉 = e〈w2〉/2 (Gardiner, 1985). Using
this relation for the integrated noise processes together with equation 6.2
and expressing the average 〈ye,i (s) exp[− ∫ t

s duye,i (u)]〉 by a derivative of the
exponential with respect to s, we find an integral expression for the mean
value

〈v(t)〉= v0e (Qe +Qi −β)t exp [−τe fe (t) − τi fi (t)]

−
∫ t

0
ds{Ve fe (s) + Vi fi (s)}e (Qe +Qi −β)s−τe fe (s)−τi fi (s), (6.3)

where fe,i (s) = Qe,i (1 − exp[−s/τe,i ]). The stationary mean value corre-
sponding to the stationary density is obtained from this expression in the
asymptotic limit t → ∞. We want to draw attention to the fact that this
mean value is finite exactly for the same condition as for the white noise
case—for

|〈v〉| < ∞ iff β > Qe + Qi (6.4)

First, this is so because otherwise the exponent (Qe + Qi − β)t in the first
line is positive and the exponential diverges for t → ∞. Furthermore, if
β < Qe + Qi , the exponential in the integrand diverges at large s.

In terms of the original parameters of R&D, the condition for a finite
stationary mean value of the voltage reads

|〈v〉| < ∞ iff gLa + ge0 + gi0 >
σ 2

e τe + σ 2
i τi

aCm
(6.5)

Note that this depends also on a and Cm, and not only on the synaptic param-
eters. R&D use as standard parameter values (Rudolph & Destexhe, 2003,
p. 2589) ge0 = 0.0121 µS, gi0 = 0.0573 µS, σe = 0.012 µS, σi = 0.0264 µS,
τe = 2.728 ms, τi = 10.49 ms, a = 34636 µm2, and Cm = 1 µF/cm2. They
state that the parameters have been varied in numerical simulations from
0% to 260% relative to these standard values covering more than “the phys-
iological range observed in vivo” (Rudolph & Destexhe, 2003). Inserting the
standard values into the relation, equation 6.5, yields

0.0851µS > 0.0221 µS. (6.6)

So in this case, the mean will be finite. However, using twice the standard
value for the inhibitory noise standard deviation—σi = 0.0528 µS (corre-
sponding to 200% of the standard value) and all other parameters as before,
leads to a diverging mean because we obtain 0.0852 µS on the right-hand
side of equation 6.5, while the left-hand side is unchanged. This means,
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even in the parameter regime that R&D studied, that the model predicts
an infinite mean value of the voltage. A stronger violation of equation 6.5
will be observed by either increasing the standard deviations σe,i and/or
correlation times τe,i or decreasing the mean conductances ge,i . We also note
that for higher moments, and especially for the variance, the condition for
finiteness will be even more restrictive, as can be concluded from the limit
cases investigated before.

The stationary mean value at arbitrary correlation times can be inferred
from equation 6.3 by taking the limit t → ∞. Assuming the relation, equa-
tion 6.4, holds true, we can neglect the first term involving the initial con-
dition v0 and obtain

〈v〉 = −
∫ ∞

0
ds{Ve fe (s) + Vi fi (s)} exp[(Qe + Qi − β)s − τe fe (s) − τi fi (s)].

(6.7)

We can also use equation 6.7 to recover the white noise result for the mean
as, for instance, found in Richardson (2004) by taking τe,i → 0. In this case,
we can integrate equation 6.7 and obtain

〈v〉wn =−{Ve Qe + Vi Qi }
∫ ∞

0
ds exp [(Qe + Qi − β)s]

=− Ve Qe + Vi Qi

β − Qe − Qi
. (6.8)

Because of the similarity of the R&D solution to the white noise solution (cf.
equation 3.12), we can also infer that the mean value of the former density
is

〈v〉RD = − Ve Qe + Vi Qi

2β − Qe − Qi
. (6.9)

Note the different prefactor of β in the denominator, which is due to the
factor 1/2 in noise intensities of the solution, equation 2.12, by R&D.

Finally, we can also determine easily the mean value for the extended
expression by R&D (Rudolph & Destexhe, 2005) since this solution is also
equivalent to the white noise solution with rescaled noise intensities. Using
the noise intensities Q′

e,i from equation 3.15, we obtain

〈v〉RD,ext =− Ve Q′
e (τe ) + Vi Q′

i (τi )
β − Q′

e (τe ) − Q′
i (τi )

=− Ve Qe (1 + βτi ) + Vi Qi (1 + βτe )
β(1 + βτi )(1 + βτe ) − Qe (1 + βτi ) − Qi (1 + βτe )

. (6.10)
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We will verify numerically that this expression is not equal to the exact
solution, equation 6.7. One can, however, show that for small to medium
values of the correlation times τe,i and weak noise intensities, these differ-
ences are not drastic. If we expand both equation 6.3 and equation 6.10 for
small noise intensities Qe , Qi (assuming for the former that the products
Qeτe , Qiτi are small, too), the resulting expressions agree to first order and
also agree with a recently derived weak noise result for filtered Poissonian
shot noise given by Richardson & Gerstner (2005, cf. eq. D.3):

〈v〉RD,ext ≈〈v〉 ≈ − Ve Qe (1 + βτi ) + Vi Qi (1 + βτe )
β(1 + βτi )(1 + βτe )

+ O
(
Q2

e , Q2
i

)
. (6.11)

The higher-order terms differ, and that is why a discrepancy between both
expressions can be seen at nonweak noise.

The results for the mean value achieved in this section are useful in
two respects. First, we can check whether trajectories indeed diverge for
parameters where the relation, equation 6.4, is violated. Second, the exact
solution for the stationary mean value and the simple expressions resulting
for the different solutions proposed by R&D can be compared in order to
reveal their range of validity. This is done in the next section.

7 Comparison to Simulations

Here we compare the different formulas for the probability density of the
membrane voltage and its mean value to numerical simulations for dif-
ferent values of the correlation times, restricting ourselves to the case of
multiplicative noise only. For the simulations, we followed a single realiza-
tion v(t) using a simple Euler procedure. The probability density at a certain
voltage is then proportional to the time spent by the realization in a small
region around this voltage. Decreasing 	t or increasing the simulation time
did not change our results.

We will first discuss the original expression, equation 2.12, proposed by
R&D and the analytical solutions for the limit cases of white and static
multiplicative noise, equations 3.8 and 5.4, respectively; later we examine
the validity of the new extended expression. Finally, we also check the
stationary and time-dependent mean value of the membrane voltage and
discuss how well these simple statistical characteristics are reproduced by
the different theories, including our exact result, equation 6.3.

To check the validity of the different expressions, we use first a dimen-
sionless parameter set where β = 1 but also the original parameter set used
by R&D (2003). In both cases, we consider variations of the correlation
times between three orders of magnitude (standard values are varied be-
tween 10% and 1000%). Note that the latter choice goes beyond the range
originally considered by R&D (2003), where parameter variations were lim-
ited to the range 0% to 260%.
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7.1 Probability Density of the Membrane Voltage—Original
Expression by R&D. In a first set of simulations, we ignore the physi-
cal dimensions of all the parameters and pick rather arbitrary but simple
values (β = 1, Qi = 0.75, Qe = 0.075). Keeping the ratio of the correlation
times (τI = 5τe ) and the values of the noise intensities Qe , Qi fixed, we
vary the correlation times. In Figure 1, simulation results are shown for
τe = 10−2, 10−1, 1, and 10. We recall that with a fixed noise intensity accord-
ing to the result by R&D given in equation 2.12, the probability should not
depend on τe at all.

It is obvious, however, in Figure 1a that the simulation data depend
strongly on the correlation times in contrast to what is predicted by equa-
tion 2.12. The difference between the original theory by R&D and the sim-
ulations is smallest for an intermediate correlation time (τe = 1). In con-
trast to the general discrepancy between simulations and equation 2.12,
the white noise formula, equation 3.8, and the formula from the static
noise theory (cf. the solid and dotted lines in Figure 1b), agree well with
the simulations at τe = 0.01 (circles) and τe = 10 (diamonds), respectively.
The small differences between simulations and theory decrease as we
go to smaller or larger correlation times, respectively, as expected. R&D
also present results of numerical simulations (Rudolph & Destexhe, 2003),
which seem to agree fairly well with their formula. In order to give a
sense of the reliability of these data, we have repeated the simulations
for one parameter set in Rudolph and Destexhe (2003, Fig. 2b). These
data are shown in Figure 2 and compared to R&D’s original solution,
equation 2.12.

For this specific parameter set, the agreement is indeed relatively
good, although there are differences between the formula and the sim-
ulation results in the location of the maximum as well as at the flanks
of the density. These differences do not vanish by extending the simu-
lation time or decreasing the time step; hence, the curve according to
equation 2.12 does not seem to be an exact solution but at best a good
approximation.

The disagreement becomes significant if the correlation times are
changed by one order of magnitude (see Figure 3) (in this case, we keep the
variances of the noises constant, as R&D have done, rather than the noise
intensities as in Figure 1). The asymptotic formulas for either vanishing (see
Figure 3a) or infinite (see 3b) correlation times derived in this article do a
much better job in these limits. Note that the large correlation time used
in Figure 3b is outside the range considered by R&D (2003). Regardless of
the fact that the correlation times we have used in Figures 3a and 3b are
possibly outside the physiological range, an analytical solution should also
cover these cases. Regarding the question of whether the correlation time is
short (close to the white noise limit), long (close to the static limit), or inter-
mediate (as seems to be the case in the original parameter set of Figure 2b in
Rudolph & Destexhe, 2003), it is not the absolute value of τe,i,I that matters
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Figure 1: Probability density of the shifted voltage compared to results of nu-
merical simulations. (a) Density according to equation 2.12 (theory by R&D) is
compared to simulations at different correlation times as indicated (τi = 5τe ).
Since the noise intensities are fixed, the simulated densities at different τe should
all fall onto the solid line according to equation 2.12, which is not the case.
(b) The simulations at small (τe = 0.01) and large (τe = 10) correlation times are
compared to our expressions found in the limit case of white and static noise:
equations 3.8 and 5.4, respectively. Note that in the constant-intensity scal-
ing, equation 5.4 depends implicitly on τe,i since the variances change as
σe,i = Qe,i/τe,i . Parameters: β = 1, Qe = 0.075, Qi = 0.75, QI = 0, 	t = 0.001,
and simulation time T = 105.

but the product βτe,i,I . Varying one or more of the parameters gL , ge0, gi0, a ,

or Cm can push the dynamics in one of the limit cases without the necessity
of changing τe,i,I .
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Figure 2: Probability density of membrane voltage corresponding to the pa-
rameters in Figure 2b of Rudolph and Destexhe (2003): gL = 0.0452 mS/cm2,
a = 34636 µm2, Cm = 1 µF/cm2, EL = −80 mV, Ee = 0 mV, Ei = −75 mV,
σe = 0.012 µS, σi = 0.0264 µS, ge0 = 0.0121 µS, gi0 = 0.0573 µS; additive-noise
parameters (σI , I0) are all zero; we used a time step of 	t = 0.1 ms and a simu-
lation time of 100 s.

7.2 Probability Density of the Membrane Voltage—Extended Expres-
sion by R&D. So far we have not considered the extended expression
(R&D, 2005) with the effective correlation times. Plotting the simulation
data shown in Figures 1a and 3 against this new formula gives a very good,
although not perfect, agreement (cf. Figures 4a and 5a). Note, for instance, in
Figure 4a that the height of the peak for τe = 1 and the location of the maxi-
mum for τe = 0.1 are slightly underestimated by the new theory. Since most
of the data look similar to gaussians, we may also check whether they are
described by the ETC theory (cf. equation 2.25). This is shown in Figures 4b
and 5b and reveals that for the two parameter sets studied so far, the noise
intensities are reasonably small such that the ETC formula gives an approx-
imation almost as good as the extended expression by R&D. One exception
to this is shown in Figure 4b: at small correlation times where the noise is
effectively white (τe = 0.1), the ETC formula fails since the noise variances
become large. For τe = 0.01, the disagreement is even worse (not shown). In
this range, the extended expression captures the density better, in particular
its nongaussian features (e.g., the asymmetry in the density).

Since the agreement of the extended expression to numerical simulations
was so far very good, one could argue that it represents the exact solution
to the problem and the small differences are merely due to numerical inac-
curacy. We will check whether the extended expression is the exact solution
in two ways. First, we know how the density behaves if both multiplica-
tive noises are very slow (βτe , βτi � 1), namely, according to equation 5.4.
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Figure 3: Probability density of membrane voltage for different orders of mag-
nitude of the correlation times τe , τi . Parameters as in Figure 2 except for the
correlation times, which were chosen one order of magnitude smaller (a) or
larger (b).

We thus possess an additional control of whether the extended expression,
equation 2.15, is exact by comparing it not only to numerical simulation
results but also to the static noise theory. Second, we have derived an exact
integral expression, equation 6.7, for the stationary mean value, so we can
compare the stationary mean value according to the extended expression
by R&D (given in equation 6.10) to the exact expression and to numerical
simulations.

To check the extended expression against the static noise theory, we
have to choose parameter values for which βτe and βτi are much larger
than one; at the same time, the noise variances should be sufficiently large.
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Figure 4: Probability density of membrane voltage for simulation data and
parameters as in Figure 1a. The extended expression equation 2.15 (a) and
the effective time constant approximation, equation 2.25 (b), are compared to
results of numerical simulations.

We compare both theories, equation 2.15 and equation 5.4, once for the
system equation 2.19, equation 2.20, with simplified parameters at strong
noise (Qe = Qi = 1) and large correlation times (βτe,i = 20) (see Figure 6a)
and once for the original system (see Figure 6b). For the latter, increases
in βτe,i can be achieved by increasing either gL , ge0, gi0 or the synaptic
correlation times τe,i . We do both and increase ge0 to the ten-fold of the
standard value by R&D (i.e., ge0 = 0.0121 µS → ge0 = 0.121 µS) and also
multiply the standard values of the correlation times by roughly three (i.e.,
τe = 2.728 ms, τi = 10.45 ms → τe = 7.5 ms, τi = 30 ms); additionally, we
choose a larger standard deviation for the inhibitory conductance than
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Figure 5: Probability density of membrane voltage for simulation data and
parameters as in Figures 2 and 3. The extended expression, equation 2.15 (a),
and the effective time constant approximation, equation 2.25 (b), are compared
to results of numerical simulations.

in R&D’s standard parameter set (σi = 0.0264 µS → σi = 0.045 µS). For
these parameters, we have βτe ≈ 4.2 and βτi ≈ 16.8, so we may expect a
reasonable agreement between static noise theory and the true probability
density of the voltage obtained by simulation.

Indeed, for both parameter sets, the static noise theory works reason-
ably well. For the simulation of the original system (see Figure 6b), we also
checked that the agreement is significantly enhanced (agreement within
line width) by using larger correlation times (e.g., τe = 20 ms, τi = 100 ms)
as can be expected. Compared to the static noise theory, the extended ex-
pression by R&D shows stronger although not large deviations. There are
differences in the location and height of the maximum of the densities for
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Figure 6: Probability density of membrane voltage for long correlation times;
static noise theory, (equation 5.4, solid lines) and extended expression by
R&D (equation 2.15, dashed lines) against numerical simulations (symbols).
(a) Density of the shifted variable v with Qe = Qi = 3, β = 1, τe = τi = 20, Ve =
1.5, Vi = −0.5. Here, the mean value is infinite. In the simulation, we im-
plemented reflecting boundaries affecting the density only in its tails (not
shown in the figure). (b) Density for the original voltage variable with gL =
0.0452 mS/cm2, a = 34, 636 µm2, Cm = 1 µF/cm2, EL = −80 mV, Ee = 0 mV,
Ei = −75 mV, σe = 0.012 µS, σi = 0.045 µS, ge0 = 0.121 µS, gi0 = 0.0574 µS,
τe = 7.5 ms, τi = 30 ms. Here the mean value is finite. Inset: Same data on a
logarithmic scale.

both parameter sets; prominent also is the difference between the tails of
the densities (see the Figure 6b inset). Hence, there are parameters that are
not completely outside the physiological range, for which the extended ex-
pression yields only an approximate description and for which the static
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noise theory works better than the extended expression by R&D. This is in
particular the case for strong and long-correlated noise.

7.3 Mean Value of the Membrane Voltage. The second way to check the
expressions by R&D was to compare their mean values to the exact expres-
sion for the stationary mean, equation 6.7. We do this for the transformed
system, equation 2.19, equation 2.20, with dimensionless parameters. In
Figure 7, the stationary mean value is shown as a function of the correlation
time τe of the excitatory conductance. In the two panels, we keep the noise
intensities Qe and Qi fixed; the correlation time of inhibition is small (in
Figure 7a) or medium (in Figure 7b) compared to the intrinsic timescale
(1/β = 1). We choose noise intensities Qi = 0.3 and Qe = 0.2 so that the
mean value is finite because equation 6.4 is satisfied. In Figure 7a the dis-
agreement between the extended expression by R&D (dash-dotted line) and
the exact solution (thick solid line) is apparent for medium values of the
correlation time. To verify this additionally, we also compare to numerical
simulation results. The latter agree with our exact theory for the mean value
within the numerical error of the simulation. We also plot two limits that
may help to explain why the new theory by R&D works in this special case
at very small and very large values of τE . At small values, both noises are
effectively white, and we have already discussed that in this case, the ex-
tended expression for the probability density, equation 2.15, approaches the
correct white noise limit. Hence, also the first moment should be correctly
reproduced in this limit. On the other hand, going to large correlation time
τe at fixed noise intensity Qe means that the effect of the colored noise ye (t)
on the dynamics vanishes. Hence, in this limit, we obtain the mean value
of a system that is driven only by one white noise (i.e., yi (t)). Also this limit
is correctly described by R&D’s new theory, since the effective noise inten-
sity Q′

e = 2Qe/[1 + βτe ] vanishes for τe → ∞ if Qe is fixed. However, for
medium values of τe , the new theory predicts a larger mean value than the
true value. The mean value, equation 6.9, of the original solution, equation
2.12 (dotted lines in Figure 7), leads to a mean value of the voltage that does
not depend on the correlation time τe at all.

If the second correlation time τI is of the order of the effective membrane
time constant 1/β (see Figure 7b), the deviations between the mean value of
the extended expression and the exact solution are smaller but extend over
all values of τe . In this case, the new solution does not approach the correct
one in either of the limit cases, τe → 0 or τe → ∞. The overall deviations
between the mean according to the extended expression are small. Also for
both panels, the differences in the mean are small compared to the standard
deviations of the voltage. Thus, the expression equation 6.10, corresponding
to the extended expression, can be regarded as a good approximation for
the mean value.

Finally, we illustrate the convergence or divergence of the mean if the
condition equation 6.4 is obeyed or violated, respectively. First, we choose



Comment on “Characterization of Subthreshold Voltage Membranes” 1923

10
-2

10
-1

10
0

10
1

10
2

τe  in a.u.

-0.3

-0.2

-0.1

0

0.1

0.2

<
v>

 in
 a

.u
.

white noise limit
R&D extended
R&D original
exact solution
Simulation results
white-noise limit
 with Qe=0

a

10
-2

10
-1

10
0

10
1

τe in a.u.

-0.3

-0.2

-0.1

0

0.1

<
v>

 in
 a

.u
.

R&D extended
R&D original
exact solution

b

Figure 7: Stationary mean value of the shifted voltage (in arbitrary units) versus
correlation time (in arbitrary units) of the excitatory conductance. Noise inten-
sities Qe = 0.2, Qi = 0.3, QI = 0, and β = 1 are fixed in all panels. Correlation
time of the inhibitory conductance: τi = 10−2 (a) and τi = 1 (b). Shown are the
exact analytical result, equation 6.7 (solid line); the mean value according to the
original solution, equation 6.9 (dotted line); and the mean value according to
the extended expression, equation 6.10 (dash-dotted line). In panel a , we also
compare to the mean value of the white noise solution for Qe = 0.2, Qi = 0.3
(thin solid line) and for Qe = 0, Qi = 0.3 (dashed line), as well as to numerical
simulation results (symbols).

the original system and the standard set of parameters by Rudolph and
Destexhe (2003) and simulate a large number of trajectories in parallel. All
of these are started at the same value (V = 0) and each with independent
noise sources, the initial values of which are drawn from the stationary
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Figure 8: Time-dependent mean value of the original voltage variable (in volts)
as a function of time (in seconds) for the initial value V(t = 0) = 0 V and
different values of the inhibitory conductance standard deviation σi ; numer-
ical simulations of equations 2.19 and 2.20 (circles) and theory according to
equation 6.3 (solid lines). For all curves, ge0 = 0.0121 µS, gi0 = 0.0573 µS, σe =
0.012 µS, τe = 2.728 ms, τi = 10.49 ms, a = 34,636 µm2, and Cm = 1 µF/cm2.
For the dashed line (theory) and the gray squares (simulations), we choose
σi = 0.0264 µS; hence, in this case, parameters correspond to the standard pa-
rameter set by Rudolph and Destexhe (2003). For the solid line (theory) and the
black circles, we used σi = 0.066 µS corresponding to the 250% of the standard
value by R&D. At the standard parameter set, the mean value saturates at a
finite level, in the second case, the mean diverges and goes beyond 100 mV
within 31 ms. Simulations were carried out for 106 voltage trajectories using an
adaptive time step (always smaller than 0.01 ms) that properly took into account
the trajectories that diverge the strongest. The large number of trajectories was
required in order to get a reliable estimate of the time-dependent mean value
in the case of strong noise (σi = 0.066 µS) where voltage fluctuations are quite
large.

gaussian densities. In an experiment, this corresponds exactly to fixing the
voltage of the neuron via voltage clamp and then to let the voltage freely
evolve under the influence of synaptic input (that has not been affected by
the voltage clamp). In Figure 8 we compare the time-dependent average of
all trajectories to our theory, equation 6.3 (in terms of the original variable
and parameters). For R&D’s standard parameters, the mean value reaches
after a relaxation of roughly 20 ms a finite value (V≈ −65 mV). The time
course of the mean value is well reproduced by our theory, as it should be.
Increasing one of the noise standard deviations to 2.5-fold of its standard
value (σi = 0.0264 µS → 0.066 µS), which is still in the range inspected by
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R&D, results in a diverging mean.5 Again the theory (solid line) is confirmed
by the simulation results (black circles). Starting from zero voltage, the
voltage goes beyond 100 mV within 31 ms. In contrast to this, the mean
value of the extended expression is finite (the condition equation 3.21 is
obeyed) and the mean value formula for this density, equation 6.10, yields a
stationary mean voltage of −66 mV. Thus, in the general colored noise case,
the extended expression cannot be used to decide whether the moments of
the membrane voltage will be finite.

We note that the divergence of the mean is due to a small number of
strongly deviating voltage trajectories in the ensemble over which we aver-
age. This implies that the divergence will not be seen in a typical trajectory
and that a large ensemble of realizations and a careful simulation of the
rare strong deviations (adaptive time step) are required to confirm the di-
verging mean predicted by the theory. Thus, although the linear model
with multiplicative gaussian noise is thought to be a simple system com-
pared to nonlinear spike generators with Poissonian input noise, its careful
numerical simulation may be much harder than that of the latter type of
model.

8 Conclusions

We have investigated the formula for the probability density of the mem-
brane voltage driven by multiplicative and/or additive (conductance
and/or current noise) proposed by R&D in their original article. Their
solution deviates from the numerical simulations in all three limits we have
studied (white noise driving, colored additive noise, and static multiplica-
tive noise). The deviation is significant over extensive parameter ranges.
The extended expression by R&D (2005), however, seems to provide a good
approximation to the probability density of the system for a large range of
parameters.

In the appendix we show where errors have been made in the derivation
of the Fokker-Planck equation on which both the original and extended
expressions are based. Although there are serious flaws in the derivation,
we have seen that the new formula (obtained by an ad hoc introduction
of effective correlation times in the original solution) gives a very good
reasonable approximation to the probability density for weak noise. What
could be the reason for this good agreement?

The best, though still phenomenological, reasoning for the solution,
equation 2.15, is as follows. First, an approximation to the probability

5 These parameter values were not considered by R&D to be in the physiological range.
We cannot, however, exclude that other parameter variations (e.g., decreasing the leak
conductance or increasing the synaptic correlation times) will not lead to a diverging
mean for parameters in the physiological range.
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density should work in the solvable white noise limit:

lim
τe ,τi →0

ρappr(v, Qe , Qi , τe , τi ) = ρwn(v, Qe , Qi ). (8.1)

Second, we know that at weak multiplicative noise of arbitrary correlation
time, the effective time constant approximation will be approached:

ρappr(v, Qe , Qi , τe , τi ) = ρETC(v, Qe , Qi , τe , τi ), (Qe , Qi small). (8.2)

The latter density given in equation 2.25 can be expressed by the white
noise density with rescaled noise intensities (note that the variance in the
ETC approximation given in equation 2.26 has this property); furthermore,
it is close to the density for white multiplicative noise if the noise is weak:

ρETC(v, Qe , Qi , τe , τi ) = ρETC(v, Qe/(1 + βτe ), Qi/(1 + βτi ), 0, 0),

(Qe ,Qi small)≈ ρ(v, Qe/(1 + βτe ), Qi/(1 + βτi ), 0, 0)

= ρwn(v, Qe/(1 + βτe ), Qi/(1 + βτi )). (8.3)

Hence, using this equation together with equation 8.1, one arrives at

ρappr(v, Qe , Qi , τe , τi ) ≈ ρwn(v, Qe/(1 + βτe ), Qi/(1 + βτi )). (8.4)

This approximation, which also obeys equation 8.1, is the extended expres-
sion by R&D. It is expected to function in the white noise and the weak
noise limits and can be regarded as an interpolation formula between these
limits. We have seen that for stronger noise and large correlation times (i.e.,
in a parameter regime where neither of the above assumptions of weak
or uncorrelated noise holds true), this density and its mean value disagree
with numerical simulation results as well as with our static noise theory. Re-
garding the parameter sets for which we checked the extended expression
for the probability density, it is remarkable that the differences to numerical
simulations were not stronger.

Two issues remain. First, we have shown that the linear model with
gaussian conductance fluctuations can show a diverging mean value. Cer-
tainly, for higher moments, as, for instance, the variance, the restrictions on
parameters will be even more severe than that for the mean value (this can
be concluded from the tractable limit cases we have considered). As demon-
strated in the case of the stationary mean value, the parameter regime for
such a divergence cannot be determined using the different solutions pro-
posed by R&D.

Of course, a real neuron can be driven by a strong synaptic input with-
out showing a diverging mean voltage—the divergence of moments found
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above is just due to the limitations of the model. One such limitation is the
diffusion approximation on which the model is based. Applying this ap-
proximation, the synaptically filtered spike train inputs have been replaced
by OUPs. In the original model with spike train input, it is well known that
the voltage cannot go below the lowest reversal potential Ei or above the
excitatory reversal potential Ee if no current (additive) noise is present (see,
e.g., Lánský & Lánská, 1987, for the case of unfiltered Poissonian input). In
this case, we do not expect a power law behavior of the probability density
at large values of the voltage. Another limitation of the model considered by
R&D is that no nonlinear spike-generating mechanism has been included.
In particular, the mechanism responsible for the voltage reset after an action
potential would prevent any power law at strong, positive voltage. Thus,
we see that at strong, synaptic input, the shot-noise character of the input
and nonlinearities in the dynamics cannot be neglected and even determine
whether the mean of the voltage is finite.

The second issue concerns the consequences of the diffusion approxima-
tion for the validity of the achieved results. Even if we assume a weak noise
such that all the lower moments like mean and variance will be finite, is
there any effect of the shot-noise character of the synaptic input that is not
taken into account properly by the diffusion approximation? Richardson
and Gerstner (2005) have recently addressed this issue and shown that the
shot-noise character will affect the statistics of the voltage and that its contri-
bution is comparable to that resulting from the multiplicativity of the noise.
Thus, for a consistent treatment, one should either include both features
(as done by Richardson and Gerstner, 2005, in the limit of weak synaptic
noise) or none (corresponding to the effective timescale approximation; cf.
Richardson & Gerstner, 2005).

Summarizing, we believe that the use of the extended expression by
R&D is restricted to parameters obeying

β � Qe + Qi . (8.5)

This restriction is consistent with (1) the diffusion approximation on which
the model is based, (2) a qualitative justification of the extended expres-
sion by R&D as given above, and (3) the finiteness of the stationary mean
and variance. For parameters that do not obey the condition equation 8.5,
one should take into account the shot-noise statistics of the synaptic
drive. Recent perturbation results were given by Richardson and Gerst-
ner (2005) assuming weak noise; we note that the small parameter in this
theory is (Qe + Qi )/β and therefore exactly equal to the small parameter in
equation 8.5.

The most promising result in our letter seems to be the exact solution
for the time-dependent mean value, a statistical measure that can be easily
determined in an experiment and might tell us a lot about the synaptic
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dynamics and its parameters. The only weakness of this formula is that it
is still based on the diffusion approximation, that is, on the assumption of
gaussian conductance noise. One may, however, overcome this limitation
by repeating the calculation for synaptically filtered shot noise.

Appendix: Analysis of the Derivation of the Fokker-Planck Equation

Here we show where in the derivation of the Fokker-Planck equation by
R&D errors have been made.

Let us first note that although R&D use a so-called Ito rule, there is no
difference between the Ito and Stratonovich interpretations of the colored
noise–driven membrane dynamics. Since the noise processes possess a finite
correlation time, the Ito-Stratonovich dilemma occurring in systems driven
by white multiplicative noise is not an issue here.

To comprehend the errors in the analytical derivation of the Fokker-
Planck equation in R&D, it suffices to consider the case of only additive
OU noise. For clarity we will use our own notation: the OUP is denoted by
yI (t), and we set hI = 1 (the latter function is used in R&D for generality).
R&D give a formula for the differential of an arbitrary function F (v(t)) in
equation B.9.

d F (v(t)) = ∂v F (v(t))dv + 1
2
∂2
v F (v(t))(dv)2. (A.1)

R&D use the membrane equation in its differential form, which for vanish-
ing multiplicative noises reads

dv = f (v)dt + dwI , (A.2)

where the drift term is f (v) = −βv and wI is the integrated OU process yI :

wI =
∫ t

0
ds yI (s). (A.3)

Inserting equation A.2 into equation A.1, we obtain

d F (v(t)) = ∂v F (v(t)) f (v(t))dt + ∂v F (v(t))dwI + 1
2
∂2
v F (v(t))(dwI )2. (A.4)

This should correspond to equation B.10 in R&D for the case of zero mul-
tiplicative noise. However, our formula differs from equation B.10 in one
important respect: R&D have replaced (dwI )2 by 2αI (t)dt using their Ito
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rule,6 equation A.13a. Dividing by dt, averaging, and using the fact that for
finite τI dwI (t)/dt = yI (t), we arrive at

d〈F (v(t))〉
dt

= 〈∂v F (v(t)) f (v(t))〉 + 〈∂v F (v(t))yI (t)〉 + 1
2

〈
∂2
v F (v(t))

(dwI )2

dt

〉
.

(A.5)

This should correspond to equation B.12 in R&D (again for the case of
vanishing multiplicative noise) but is not equivalent to the latter equation
for two reasons. First, R&D set the second term on the right-hand side to
zero, reasoning that the mean value 〈yI (t)〉 is zero (they also use an argument
about h{e,i,I }, which is irrelevant in the additive noise case considered here).
Evidently if yI (t) is a colored noise, it will be correlated to its values in the
past y(t′) with t′ < t. The voltage v(t) and any nontrivial function F (v(t)) is
a functional of and therefore correlated to yI (t′) with t′ < t. Consequently,
there is also a correlation between yI (t) and F (v(t)), and thus

〈∂v F (v(t))yI (t)〉 
= 〈∂v F (v(t))〉〈yI (t)〉 = 0. (A.6)

Hence, setting the second term (which actually describes the effect of the
noise on the system) to zero is wrong.7 This also applies to the respective
terms due to the multiplicative noise.

Second, the last term on the right-hand side of equation A.5 was
treated as a finite term in the limit t → ∞. According to R&D’s equa-
tion A.13a (for i = j), equation 3.2, and equation 3.3, limt→∞〈(dwI )2〉 =
limt→∞ 2αI (t)dt = σ̃ 2

I τI dt and, thus 〈(dw2
I )〉/dt → σ̃ 2

I τI as t → ∞. However,
the averaged variance of dwI = yI (t)dt is 〈(dwI )2〉 = 〈yI (t)2〉(dt)2 = σ̃ 2

I (dt)2

and therefore the last term in equation A.5 is of first order in dt (since
(dwI )2/dt = yI (t)2dt ∼ dt) and vanishes. This is the second error in the
derivation.

We note that the limit in equation 3.3 is not correctly carried out. Even
if we follow R&D in using their relations, equation A.13a, together with
the correct relation, equation A.10a (instead of the white noise formula,
equation A.12a), we obtain that for finite τI , the mean squared increment

6 Note that R&D use αI (t) for two different expressions: according to equation B.8 for
σ̃ 2

I [τI (1 − exp(−t/τI )) − t] + w2
I (t)/(2τI ) but also according to equation 3.2 for the average

of this stochastic quantity.
7 For readers still unconvinced of equation A.6, a simple example will be useful. Let

F (v(t)) = v2(t)/2. Then 〈∂v F (v(t))yI (t)〉 = 〈v(t)yI (t)〉. In the stationary state, this average
can be calculated as

∫ ∫
dvdyI vyI P0(v, yI ) using the density equation 4.6. This yields

〈v(t)yI (t)〉 = QI /[1 + βτI ], which is finite for all finite values of the noise intensity QI and
correlation time τI . Note that this line of reasoning is valid only for truly colored noise
(τI > 0); the white noise case has to be treated separately.
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〈(dwI )2〉 is zero in linear order in dt for all times t, which is in contradiction to
equation 3.3 in R&D. This incorrect limit stems from using the white noise
formula, equation (A.12a) which R&D assume to go from equation 3.2
to equation 3.3 in R&D (2003). The use of equation A.12a is justified by
R&D by the steady-state limit t → ∞ with t/τI � 1. However, t → ∞ with
t/τI � 1 does not imply that τI → 0 and that one can use equation A.12a,
which holds true only for τI → 0. In other words, a steady-state limit does
not imply a white noise limit.

We now show that keeping the proper terms in equation A.5 does not
lead to a useful equation for the solution of the original problem. After
applying what was explained above, equation A.5 reads correctly,

d〈F (v(t))〉
dt

= 〈
∂v F (v(t)) f (v(t))

〉 + 〈
∂v F (v(t))yI (t)

〉
. (A.7)

Because of the correlation between v(t) and yI (t), we have to use the full
two-dimensional probability density to express the averages:

〈
∂v F (v(t)) f (v(t))

〉= ∫
dv

∫
dyI (∂v F (v)) f (v)P(v, yI , t)

=
∫

dv(∂v F (v)) f (v)ρ(v, t)

〈
∂v F (v(t))yI (t)

〉= ∫
dv

∫
dyI (∂v F (v))yI P(v, yI , t). (A.8)

Inserting these relations into equation A.7, performing an integration by
part, and setting F (v) = 1 leads us to

∂tρ(v, t) = −∂v( f (v)ρ(v, t)) − ∂v

(∫
dyI yI P(v, y, t)

)
, (A.9)

which is not a closed equation for ρ(v, t) or a Fokker-Planck equation. The
above equation with f (v) = −βv can be also obtained by integrating the
two-dimensional Fokker-Planck equation, equation 4.5, over yI .

In conclusion, by neglecting a finite term and assuming a vanishing term
to be finite, R&D have effectively replaced one term by the other; the colored
noise drift term is replaced by a white noise diffusion term, the latter with a
prefactor that corresponds to only half of the noise intensity. This amounts
to a white noise approximation of the colored conductance noise, although
with a noise intensity that is not correct in the white noise limit of the
problem.
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